
Efficient Collision Detection Using
a Dual Bounding Volume Hierarchy

Jung-Woo Chang1, Wenping Wang2, and Myung-Soo Kim1

1 Seoul National University, Korea
2 University of Hong Kong, Hong Kong

Abstract. We perform collision detection between static rigid objects
using a bounding volume hierarchy which consists of an oriented bound-
ing box (OBB) tree enhanced with bounding spheres. This approach
combines the compactness of OBBs and the simplicity of spheres. The
majority of distant objects are separated using the simpler sphere tests.
The remaining objects are in close proximity, where some separation axes
are significantly more effective than others. We select 5 from among the
15 potential separating axes for OBBs. Experimental results show that
our algorithm achieved favorable speed up with respect to the existing
OBB algorithms.

Keywords: Collision detection, Bounding volume hierarchy, OBB,
Sphere.

1 Introduction

Collision detection is one of the most important geometric queries, with diverse
engineering applications in areas such as robotics, computer graphics, anima-
tion, computer games, virtual reality, simulation and haptic rendering [1]. Be-
cause of their importance, collision detection algorithms have been studied for
decades [12].

Among many different approaches, the bounding volume hierarchy has proved
to be the most successful in contemporary systems [1]. The computation time of
this approach can be formulated as follows [3]:

T = Nv × Cv + Np × Cp, (1)

where
T : total execution time
Nv: number of bounding volume pair overlap tests
Cv: time for testing a pair of bounding volumes
Np: number of primitive pair overlap tests
Cp: time for testing a pair of primitives

This formula clearly shows that the performance mainly depends on two factors:
the tightness of the bounding volumes and the simplicity of overlap test for a
pair of bounding volumes. The first factor is related to Nv and Np, whereas the
second factor is related to Cv.

F. Chen and B. Jüttler (Eds.): GMP 2008, LNCS 4975, pp. 143–154, 2008.
© Springer-Verlag Berlin Heidelberg 2008

144 J.-W. Chang, W. Wang, and M.-S. Kim

Spheres [6,14] and axially aligned bounding boxes (AABBs) [2] allow the
simplest overlap tests. On the other hand, oriented bounding boxes (OBBs) [3]
and discrete orientation polytopes (k-DOP) [8] fit volumes more tightly. In this
paper, we propose a dual scheme that combines the simplicity of spheres and the
compactness of OBBs to produce an efficient algorithm. The experiments show
that the performance improvement over conventional algorithms is favorable.

Van den Bergen [19] suggested a simple but rough separation test for OBBs
known as SAT lite. By using only 6 of the 15 potential separating axes, SAT lite
demonstrates a better performance than the original OBB algorithm that uses
all 15 axes [3]. In this paper, we use a sphere test followed by 5 separation axis
tests. These 6 tests may look the same as the 6 tests of the SAT lite. However,
the main difference is that two objects that have passed the sphere test can be
expected to be in close proximity. In this stage, the choice of which 5 axes among
the 15 possible axes becomes very important.

The main contribution of this work can be summarized as follows:

– A dual OBB-sphere tree is proposed, where each OBB node is enhanced with
a bounding sphere.

– The more efficient sphere test is applied first to eliminate distant objects.
– We propose a selection of five separation axes that are effective in separating

objects which are very close but not overlapping.
– For a wide range of experiments, the performance improvement has been

observed over conventional OBB algorithms.

2 Related Work

In this section, we will briefly review related work on collision detection. The
most basic type of collision detection algorithm deals with rigid bodies in static
poses. But many recent studies have looked at more complicated problems, in-
cluding detecting collisions between deformable models rather than rigid mod-
els [7,9,10,11,17,22], collision detection in the continuous time domain rather
than static pose [15,16] and collision detection algorithms which can run on
graphics hardware [4,22]. Even though these complicated problems deal with
more general cases, the basic type collision detection algorithm is still quite
important because the algorithms for the basic type problem are much more
efficient than the algorithms for complicated problems. In this paper, we focus
on the algorithm for the basic type problem.

The most widely used algorithms for detecting collisions between static, rigid
bodies are based on a hierarchy of bounding volumes. As formulated in Equa-
tion (1), the performance of this approach is governed by the tightness of the
bounding volumes and the simplicity of the overlap test for a pair of bounding
volumes. Because the selection of the bounding volume is closely related to the
performance of an algorithm, many different kinds of bounding volumes have
been suggested.

Beckmann et al. [2] proposed the AABB tree and Palmer et al. [14] and Hub-
bard [6] put forward the sphere tree to solve the problem. By introducing OBBs,

Efficient Collision Detection Using a Dual Bounding Volume Hierarchy 145

having additional rotational degrees of freedom, Gottschalk et al. [3] constructed
a new and efficient collision detection algorithm. Klosowski et al. [8] suggested
the k-DOP tree which tightly bounds the underlying mesh and efficiently tests
the overlap of two bounding volumes. To preserve the geometric feature of k-
DOP, the k-DOP-based algorithm should tumble and recompute the k-DOP for
rotational motion. There are some efficient methods that solve this k-DOP tum-
bling problem [5,21]. Larsen et al. [13] proposed the rectangular swept sphere
as a bounding volume to solve the distance measure problem, which is closely
related to collision detection.

Two convex objects are disjoint if and only if there exists a separating axis
such that the projections of the two objects on to that axis are separate. If
the objects are both convex polytopes, it is possible to enumerate a finite set
of axes that can guarantee their separation, if they are separate. Two convex
polytopes are separate if and only if the projections of the two polytopes are
separate on at least one of these potential separating axes. The number of such
axes is determined by the geometry of the polytopes. For instance, AABBs have
3 potential separating axes, which correspond to the x, y and z axis of coordinate
system. Two k-DOPs have k potential separating axes and two OBBs have 15
potential separating axes. The SAT lite algorithm of van den Bergen [19] uses
6 of the 15 axes. By this rough separation test, the overall performance of the
SAT lite algorithm is better than the original algorithm based on the exact OBB
test.

3 Collision Detection Algorithm

We will now present an efficient collision detection algorithm for static rigid
bodies. We will first describe the construction of a dual OBB-sphere tree and
show how the problem can be reduced to a situation of close proximity using a
sphere test. Then we will go on to describe the selection of an effective set of
axes to deal with the remaining problem.

3.1 Dual OBB-sphere Bounding Volume Tree

To combine the relative advantages of OBB and sphere trees, we construct a dual
OBB-sphere tree which keeps both an OBB and a bounding sphere for each node
of the tree. The basic structure of the dual OBB-sphere tree is the same as the
OBB tree proposed by Gottschalk et al. [3]. For every node of an OBB tree,
the dual OBB-sphere tree also contains a sphere which bounds the elements of
the polygonal mesh that are at that node.

There are two ways commonly used for the construction of a bounding sphere.
The first method is to construct the smallest enclosing sphere [20]. The second is
to fix the center of the bounding sphere at the center of the OBB. In the latter
case the centers of the two bounding spheres under a separation test can be
reused for the subsequent OBB separation test, so the second method provides a
simpler overlap test. But the first method naturally guarantees a tighter bound-
ing sphere. From a series of experiments, we found that the tightness of the first

146 J.-W. Chang, W. Wang, and M.-S. Kim

method is more important than the simplicity of the second for the improvement
of overall performance. The dual OBB-sphere bounding volume tree therefore
keeps a smallest enclosing bounding sphere and an OBB at each node.

The test for separation of a pair of nodes in the dual OBB-sphere trees is as
follows. The bounding spheres of two corresponding nodes are tested whether
they overlap or not. If the bounding spheres are separate, the two nodes are
separate too. If the bounding spheres overlap, then the OBBs are tested for
overlap using the method to be described in the following subsection.

Testing the bounding spheres has two advantages. The first is enhanced tight-
ness. Although OBBs are generally tighter than spheres, there are some cases in
which the spheres are separate when the OBBs overlap. The second advantage
is a more general reduction of the problem. OBBs are only tested when they are
quite close because remote OBBs are eliminated by the sphere test. An over-
lap test can be designed especially for the case of OBBs in close proximity, as
described in the following subsection.

3.2 The Selection of a Set of Separating Axes

Gottschalk et al. [3] proved that the separation test for two OBBs can be re-
duced to separation tests with respect to 15 potential separating axes. Van den
Bergen [19] then suggested SAT lite, which is a looser but simpler separation
test that uses a subset of 6 of the potential separating axes. However, any sub-
set of the potential separating axes can provide a viable separation test. In this
subsection, we suggest a near-optimal subset of the potential separating axes for
OBBs which are already known to be in close proximity.

The 15 potential separating axes for two OBBs are {a0, a1, a2, b0, b1, b2, c00,
c01, c02, c10, c11, c12, c20, c21, c22}. The axes {a0, a1, a2} are defined by the ori-
entation of the first OBB, and the subscripts are defined by the extents of the
OBB, such that the extent corresponding to a0 is smaller than the other extents,
and the extent corresponding to a2 is larger than the other extents. The axes
{b0, b1, b2} are defined by the orientation of the second OBB and the subscripts
are defined as before. The axis cij is the cross product of ai and bj . The exact
separation test for OBBs uses all 15 axes but SAT lite uses {a0, a1, a2, b0, b1, b2}
only. On the other hand, we propose a sphere test followed by the separation
test using 5 axes {a0, b0, c22, c12, c21}.

Our selection of the separating axes is based on the fact that the extent
corresponding to a potential separating axis is much more important for OBBs in
close proximity than it is in the general case. Because this fact is hard to illustrate
in 3D, we will consider the Minkowski sum of bounding volumes in 2D [1]. The
separation test for two rectangles is closely related to the containment test for a
reference point with respect to slabs, and it is also determined by the Minkowski
sum of the rectangles. This relation is shown in Figures 1 and 2. The left images
of Figures 1 and 2 denote the objects itself and the right images denote their
configuration spaces defined by the Minkowski sum of two objects. In Figure 1,
two rectangles are separated with respect to the y axis, and the relative center of
the two rectangles is placed outside the slab, which is orthogonal to the y axis.

Efficient Collision Detection Using a Dual Bounding Volume Hierarchy 147

(a) (b)

Fig. 1. The relation between the overlap test for an axis and the containment test for
a slab - separation case

(a) (b)

Fig. 2. The relation between the overlap test for an axis and the containment test for
a slab - false positive case

Figure 2 shows a false positive case. Though the two rectangles are separated and
their relative center is placed outside of the Minkowski sum, they are overlapping
on the y axis and their relative center is located inside of the slab.

Figures 3 and 4 show the relation between the extent corresponding to an
axis and the compactness achieved by that axis when the objects are in close
proximity. In the case of 2D rectangles, the potential separating axes are defined
by the orientation of each rectangle. The 4 potential separating axes can be
categorized into 2 axes {a0, b0} which correspond to smaller extents and 2 axes
{a1, b1} which correspond to larger extents. The axes {a0, b0} can be called as
minor axes and the axes {a1, b1} can be called as major axes like the diameters of
ellipse are commonly called. Diagram (c) in both Figures shows the importance of
the extent corresponding to an axis when the objects are in close proximity. If the
relative center of two objects is contained in the Minkowski sum of two bounding
circles, the two bounding rectangles must be tested. Regarding the selection of
separating axes, the Minkowski sum of two bounding circles can be subdivided to
4 regions - white region, light gray region, dark gray region and black region. The
white region shows that the two rectangles overlap for all 4 potential separating
axes. In the light gray region the two rectangles are separated with respect to
minor axes and in the dark gray region the two rectangles are separated with
respect to major axes. If the relative center of two objects is within the black

148 J.-W. Chang, W. Wang, and M.-S. Kim

a1

a0

b1

b0

(a) (b) (c)

Fig. 3. Minkowski sum of bounding volumes (general case): (a) O1 and its bounding
rectangle and bounding circle; (b) O2 and its bounding rectangle and bounding circle;
(c) The Minkowski sum of the two bounding rectangles and that of the two bounding
circles

a1

a0
b1

b0

(a) (b) (c)

Fig. 4. Minkowski sum of bounding volumes (extreme case): (a) O1 and its bounding
rectangle and bounding circle; (b) O2 and its bounding rectangle and bounding circle;
(c) the Minkowski sum of the two bounding rectangles, that of the two bounding circles,
and the clipped parallelograms defined by each set of separating axes

region, then either the separation test with respect to the minor axes or the
separation test with respect to the major axes will detect the separation. In
these figures, the reduction in discrimination that comes from eliminating the
2 major axes is denoted by the dark gray region, which is relatively small in
Figure 4 and is absent in Figure 3. These examples support the elimination of
the separation test for major axes. A more detailed discussion about the loss of
discrimination region is presented in the Appendix.

Efficient Collision Detection Using a Dual Bounding Volume Hierarchy 149

Fig. 5. The length of projection

The above suggests that an axis which corresponds to a smaller extent should
be preferred. For three-dimensional OBBs, a0 is likely to be a more discriminat-
ing axis than a1 or a2 and we would expect b0 to be better than b1 or b2. In the
case of axes defined as a cross product, we need to estimate the length of projec-
tion. This can be most easily shown by an example. The extents corresponding
to each axis can be written {e0, e1, e2} and {f0, f1, f2}, where e0 corresponds to
a0 and f0 corresponds to b0. The axis c12 is orthogonal to a1 and to b2. Because
of this orthogonality, the projection of the first OBB on to c12 can be reduced
to the projection of a rectangle whose extents are e0 and e2. The length of the
projection is bounded by the interval [e0,

√
e0

2 + e2
2] as shown in Figure 5. In

the same way, the projection of the second OBB on to c12 is bounded by the
interval [f0,

√
f0

2 + f1
2]. Because the axis with the smallest length of projection

is likely to be the most effective, c22 is chosen rather than c11 or c00.
The foregoing discussion can be summarized as follows:

– In the case of axes defined by the orientation of OBBs, the axis with the
smallest extent is preferred.

– An axis cij is preferred if the extents corresponding to ai and bj are relatively
large.

By using these rules, the potential separating axes can be sorted. The re-
maining problem is to determine the size of the reduced set of axes. We used a
greedy framework for a series of experiments. Each axis is added to the reduced
set of axes in the order of preference and tested to see whether it improves the
performance of collision detection. The experiments show that the optimal size
of the reduced set of axes is 5 and the final set of axes is {a0, b0, c22, c12, c21}.

4 Experimental Results

We have implemented our collision detection algorithm in C++ on an Intel Core
Duo 1.66GHz PC with a 1.5GB main memory. To demonstrate the performance

150 J.-W. Chang, W. Wang, and M.-S. Kim

Table 1. The execution time (in sec)

RAPID QuickCD SAT lite Dual

Scenario I

0% 27.2540 50.5709 25.3296 20.6053
1% 14.0696 36.4444 13.2419 10.1924
2% 8.6457 26.2898 8.1142 5.8939
3% 6.2860 19.6893 5.8670 4.0741
4% 4.9193 15.4700 4.5779 3.0381
5% 4.0032 12.7353 3.7149 2.3816

Scenario II

10−1 0.0012 0.0112 0.0010 0.0013
10−2 0.0138 0.4909 0.0113 0.0131
10−3 0.1754 0.8663 0.1418 0.1653
10−4 0.9418 0.9339 0.7621 0.7074
10−5 1.1858 0.9409 0.9682 0.8973

Scenario III 0.9640 0.5816 0.9935 0.8690

of our algorithm, we used three heterogeneous scenarios, each applied to different
input meshes and position/orientation configurations.

In Scenario I, we employed two Happy Buddha models, each constructed with
15,536 triangles, and located the two models in 229,824 different configurations
of relative position and orientation. The different configurations were generated
by the sphere method of Trenkel et al. [18], which is a benchmark generation
method for collision detection algorithms. We used 6 different relative distances:
0%, 1%, 2%, 3%, 4%, and 5% of the size of input models. Each distance is
determined by the radius of a bounding sphere. A total of 266 different positions
are generated on the sphere by sampling the spherical coordinates at every 15°.
Moreover, a total of 144 different orientations are generated by sampling Euler
rotation angles at every 60°. For each one of six distances, a total of 38,304
configurations are tested.

Scenario II considers two concentric spheres of radius 1 and 1+ε respectively.
(This test was also conducted in Gottschalk et al. [3] and Klosowski et al. [8].)
Each sphere was approximated with 79,600 triangles, and five different values of
ε were used: 10−1, 10−2, 10−3, 10−4, and 10−5.

In Scenario III, we repeat one test of Klosowski et al. [8], where a hand model
with 404 triangles moves along a path consisting of 2,528 frames in the interior
of an airplane constructed with 169,944 triangles.

For comparison purpose, in addition to ours we have also tested three other
collision detection packages: RAPID, QuickCD, and SAT lite. RAPID is an OBB-
based collision detection package which is available from http://www.cs.unc.
edu/~geom/OBB/OBBT.html. QuickCD is a k-DOP-based package available from
http://www.ams.sunysb.edu/∼jklosow/quickcd/QuickCD.html. By slightly
modifying the source code of RAPID, we implemented the SAT lite as well as
our own algorithm called Dual.

Table 1 shows the execution times of collision detection tests applied to each
scenario using four different packages. Dual is faster than RAPID about 24-40%
for Scenario I and about 10% for Scenario III. It is also faster than RAPID

http://www.cs.unc.edu/~geom/OBB/OBBT.html
http://www.cs.unc.edu/~geom/OBB/OBBT.html
 http://www.ams.sunysb.edu/~jklosow/quickcd/QuickCD.html

Efficient Collision Detection Using a Dual Bounding Volume Hierarchy 151

Table 2. The number of overlap tests

RAPID SAT lite Dual
Box Triangle Box Triangle Sphere Box Triangle

Scenario I

0% 56,228,398 2,301,207 65,976,730 3,141,544 59,980,606 47,996,655 2,353,391
1% 32,878,322 253,521 39,583,946 435,413 34,891,432 26,718,220 272,417
2% 20,601,212 10,717 24,899,942 22,324 21,004,422 15,453,244 12,507
3% 15,053,514 1,842 18,128,188 3,670 14,671,214 10,563,698 2,122
4% 11,830,858 834 14,215,850 1,586 11,018,180 7,823,461 972
5% 9,656,554 504 11,568,194 752 8,691,784 6,105,813 546

Scenario II

10−1 2,735 0 2,879 0 3,778 3,081 0
10−2 34,195 0 35,283 0 44,522 35,895 0
10−3 445,727 0 460,279 0 591,726 477,699 0
10−4 2,224,243 89,284 2,299,687 102,236 2,373,534 1,981,233 89,286
10−5 2,780,453 136,796 2,874,967 184,672 2,972,484 2,498,341 146,129

Scenario III 1,760,646 168,962 2,208,346 264,964 2,055,120 1,922,216 170,038

about 5-25% for 4 cases of Scenario II and slower than RAPID about 8% only
for one case (corresponding to the largest value of ε = 10−1). Moreover, it is
faster than QuickCD about 60-80% for Scenario I and 5-97% for Scenario
II. Nevertheless, it is slower than QuickCD about 50% for Scenario III. Dual
is also faster than SAT lite about 18-36% for Scenario I and about 13% for
Scenario III. It is slower about 16-30% for 3 cases of Scenario II and faster
about 7% for 2 cases (corresponding to the smaller values of ε = 10−4, 10−5).

By comparing the execution times, we realized that the k-DOP-based al-
gorithm and the OBB-based algorithms show different patterns. This means
that there are some applications which best fit to k-DOP-based algorithm and
some to OBB-based algorithms. For our experiments, the outperformance of k-
DOP in Scenario III is based on the fact that the orientation changes and the
corresponding recomputation of k-DOPs are needed only for the moving hand
model which is considerably smaller (404 triangles) than the whole environment
(170,348 triangles). Since our algorithm is based on OBB, it showed a pattern
similar to the other OBB-based algorithms. Thus we concentrate on the perfor-
mance of three OBB-based algorithms below.

More detailed discussions on the performance of three OBB-based implemen-
tations are in Table 2. SAT lite uses only a subset of potential separating axes;
thus the number of bounding volume overlap tests and triangle overlap tests for
SAT lite is larger than that for RAPID. Though SAT lite needs more overlap
tests, SAT lite is faster than RAPID for Scenario I and Scenario II since each
bounding volume overlap test is considerably simpler. By comparing the number
of bounding volume overlap tests and triangle overlap tests for SAT lite and that
for Dual, we can show the advantage of enhanced tightness which was discussed
in Section 3.1. The number of triangle overlap tests for Dual is smaller than that
for SAT lite in all three scenarios. Moreover, the number of bounding volume
overlap tests for Dual is smaller than for SAT lite in Scenario I and Scenario
III. For 3 cases in Scenario I, the number of bounding volume overlap tests
for Dual is even smaller than RAPID. This result implies that the reduced set

152 J.-W. Chang, W. Wang, and M.-S. Kim

of one sphere and five axes in our algorithm is more effective than the six axes
of SAT lite.

Dual is faster than RAPID for all cases except the case of 10−1 in Scenario
II. It is also faster than SAT lite except the three cases of 10−1, 10−2, 10−3 in
Scenario II. Because the performance for the worst case is more important, the
case of 0% is the most important for Scenario I and the case of 10−5 is the
most important for Scenario II. In other words, the more difficult cases where
Dual show better performance are more significant than the cases where RAPID
or SAT lite show better performance.

The above experimental results show that our algorithm is a good choice when
a collision detection package is needed for static rigid bodies.

5 Conclusions

We have presented a fast OBB-based collision detection algorithm that uses
both OBBs and spherical bounding volumes. We have shown how to combine
the compactness of OBBs and the efficient overlap test for spheres. Out of the
15 possible separation axes for two OBBs, we have selected 5 axes which detect
separation most effectively. Experimental results show that our scheme makes a
favorable speed up with respect to existing algorithms based on OBBs.

References

1. Akenine-Moller, T., Hains, E.: Real-Time Rendering. A K Peters (2002)
2. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R∗-Tree: an efficient

and robust access method for points and rectangles. In: ACM SIGMOD Conf. on
the Management of Data, pp. 322–331 (1990)

3. Gottschalk, S., Lin, M.C., Manocha, D.: OBB-Tree: a hierarchical structure for
rapid interference detection. In: ACM SIGGRAPH 1996, pp. 171–180 (1996)

4. Govindaraju, N.K., Redon, S., Lin, M.C., Manocha, D.: CULLIDE: interactive
collision detection between complex models in large environments using graphics
hardware. In: Proc. Eurographics/SIGGRAPH Graphics Hardware Workshop, pp.
25–32 (2003)

5. He, T.: Fast collision detection using QuOSPO trees. In: ACM Symp. on Interactive
3D Graphics, pp. 55–62 (1999)

6. Hubbard, P.M.: Collision detection for interactive graphics applications. IEEE
Trans. on Visualization and Computer Graphics 1(3), 218–230 (1995)

7. James, D.L., Pai, D.K.: BD-Tree: output-sensitive collision detection for reduced
deformable models. ACM Trans. on Graphics 23(3), 393–398 (2004)

8. Klosowski, J.T., Held, M., Mitchell, J.S.B., Sowizral, H., Zikan, K.: Efficient col-
lision detection using bounding volume hierarchies of k-DOPs. IEEE Trans. on
Visualization and Computer Graphics 4(1), 21–37 (1998)

9. Kavan, L., Zara, J.: Fast collision detection for skeletally deformable models. Com-
puter Graphics Forum 24(3), 363–372 (2005)

10. Larsson, T., Akenine-Moller, T.: Collision detection for continuously deforming
bodies. In: Proc. Eurographics, pp. 325–333 (2001)

Efficient Collision Detection Using a Dual Bounding Volume Hierarchy 153

11. Larsson, T., Akenine-Moller, T.: Efficient collision detection for models deformed
by morphing. The Visual Computer 19(2-3), 164–174 (2003)

12. Lin, M.C., Gottschalk, S.: Collision detection between geometric models: a survey.
In: Proc. IMA Conference on the Mathematics of Surfaces, pp. 37–56 (1998)

13. Larsen, E., Gottschalk, S., Lin, M.C.: Fast distance queries using rectangular swept
sphere volumes. In: Proc. IEEE International Conf. on Robotics and Automation
(ICRA), pp. 3719–3726 (2000)

14. Palmer, I., Grimsdale, R.: Collision detection for animation using sphere-trees.
Computer Graphics Forum 14(2), 105–116 (1995)

15. Redon, S., Kheddar, A., Coquillart, S.: Fast continuous collision detection between
rigid bodies. Computer Graphics Forum 21(3), 279–287 (2002)

16. Redon, S., Kim, Y.J., Lin, M.C., Manocha, D.: Fast continuous collision detection
for articulated models. In: ACM Symp. on Solid Modeling and Applications, pp.
145–156 (2004)

17. Teschner, M., Kimmerle, S., Heidelberger, B., Zachmann, G., Raghupathi, L.,
Fuhrmann, A., Cani, M.-P., Faure, F., Magnenat-Thalmann, N., Strasser, W.,
Volino, P.: Collision detection for deformable objects. Computer Graphics Fo-
rum 24(1), 61–81 (2005)

18. Trenkel, S., Weller, R., Zachmann, G.: A Benchmarking Suite for Static Collision
Detection Algorithms. In: International Conference in Central Europe on Computer
Graphics, Visualization and Computer Vision (WSCG) (2007)

19. van den Bergen, G.: Efficient collision detection of complex deformable models
using AABB trees. J. Graphics Tools 2(4), 1–14 (1997)

20. Welzl, E.: Smallest enclosing disks (balls and ellipsoids). New Results and New
Trends in Computer Science 555, 359–370 (1991)

21. Zachmann, G.: Rapid collision detection by dynamically aligned dop-trees. In: Proc.
of IEEE Virtual Reality Annual International Symposium (VRAIS), pp. 90–97
(1998)

22. Zhang, X., Kim, Y.J.: Interactive collision detection for deformable models using
Streaming AABBs. IEEE Trans. on Visualization and Computer Graphics 13(2),
318–329 (2007)

Appendix

We present a statistical analysis of the loss of discrimination resulting from the
elimination of the major axes in the two-dimensional case.

The overhead in discrimination corresponds to the dark gray region in
Figure 4. A general formula for the area of this dark gray region would be
very complicated; thus we have adopted a statistical analysis. By calculating the
area for a number of samples, we provide an understanding of this overhead.

Because the space of all possible rectangles and circles is huge, we made the
following assumptions:

– Assumption 1: The extents corresponding to a1 and b1 are fixed at 1.
– Assumption 2: To restrict the space of possible circles, each bounding circle

surrounds the oriented bounding rectangle. The center of the bounding circle
is fixed at the center of the bounding rectangle and its radius is determined
by the size of the bounding rectangle. This assumption makes the calculation
easy, and also makes the estimation very conservative.

154 J.-W. Chang, W. Wang, and M.-S. Kim

– Assumption 3: Because the rectangle and the circle are both symmetrical,
and the center of the bounding circle is fixed at the center of the bound-
ing rectangle, the angle between a0 and b0 can be limited to the range of
0°∼90° without loss of generality.

The extents corresponding to a0 and b0 are written h1 and h2, which are of
course both less than or equal to 1. The angle is sampled at 10° increments and
h1 and h2 are sampled with 0.1 increments. This gives 10 samples for each of 3
free variables, making 1,000 samples in total.

The ratio of the areas of two different regions is calculated as

ratio =
area of dark gray region

area of white region + area of dark gray region
.

The dark gray region denotes the overhead in discrimination. The white region
and the dark gray region are the ones we test in our algorithm. This ratio repre-
sents the percentage of false positive case resulting from eliminating two major
axes.

The average ratio for the 1,000 samples is 6.4%. For 80.7% of these samples,
the ratio is less than 10%. In the worst case, the ratio is 22.2%. This worst case
arises when the angle is 0° , and h1 and h2 are equal to 1.0.

	Efficient Collision Detection Using a Dual Bounding Volume Hierarchy
	Introduction
	Related Work
	Collision Detection Algorithm
	Dual OBB-sphere Bounding Volume Tree
	The Selection of a Set of Separating Axes

	Experimental Results
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

